Super jeu de taquin and combinatorics of super tableaux of type A

نویسندگان

چکیده

This paper presents a combinatorial study of the super plactic monoid type A, which is related to representations general linear Lie superalgebra. We introduce analogue Schützenberger’s jeu de taquin on structure tableaux over signed alphabet. show that this procedure transforms skew into Young compatible with congruence and it confluent. deduce properties relating insertion algorithms tableaux. Moreover, we evacuation as an involution its compatibility congruence. Finally, describe in terms Fomin’s growth diagrams order give version Littlewood–Richardson rule.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bijective proof of the hook-content formula for super Schur functions and a modified jeu de taquin

A bijective proof of the product formula for the principal specialization of super Schur functions (also called hook Schur functions) is given using the combinatorial description of super Schur functions in terms of certain tableaux due to Berele and Regev. Our bijective proof is based on the Hillman–Grassl algorithm and a modified version of Schützenberger’s jeu de taquin. We then explore the ...

متن کامل

A Jeu De Taquin Theory for Increasing Tableaux, with Applications to K-theoretic Schubert Calculus

We introduce a theory of jeu de taquin for increasing tableaux, extending fundamental work of [Schützenberger ’77] for standard Young tableaux. We apply this to give a new combinatorial rule for the K-theory Schubert calculus of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the rules of [Buch ’02] and others. This rule naturally generalizes to give a conjectural root-...

متن کامل

Backward Jeu de Taquin Slides for Composition Tableaux and a Noncommutative Pieri Rule

We give a backward jeu de taquin slide analogue on semistandard reverse composition tableaux. These tableaux were first studied by Haglund, Luoto, Mason and van Willigenburg when defining quasisymmetric Schur functions. Our algorithm for performing backward jeu de taquin slides on semistandard reverse composition tableaux results in a natural operator on compositions that we call the jdt operat...

متن کامل

Jeu-de-taquin promotion and a cyclic sieving phenomenon for semistandard hook tableaux

Jeu-de-taquin promotion yields a bijection on the set of semistandard λ-tableaux with entries bounded by k. In this note, we determine the order of jeu-de-taquin promotion on the set of semistandard hook tableaux CST ((n−m, 1m), k), with entries bounded by k, and on the set of semistandard hook tableaux with fixed content α, CST ((n−m, 1m), k, α). We give a bijection between CST ((n−m, 1m), k, ...

متن کامل

A Symmetry Theorem on a Modified Jeu De Taquin

For their bijective proof of the hook-length formula for the number of standard tableaux of a fixed shape Novelli, Pak and Stoyanovskii [2] define a modified jeu de taquin which transforms an arbitrary filling of the Ferrers diagram with 1, 2, . . . , n (tabloid) into a standard tableau. Their definition relies on a total order of the cells in the Ferrers diagram induced by a special standard t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2022

ISSN: ['0218-1967', '1793-6500']

DOI: https://doi.org/10.1142/s0218196722500394